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iterated maps 
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Department of Physics, University of Houston, Houston, TX 77004, USA 

Received 15 April 1986 

Abstract. Variations of the three most commonly used definitions of fractal dimension, 
namely the capacity, the information dimension and the correlation exponent, with the 
degeneracy of the critical point is studied both numerically and analytically. The numerical 
results agree very well with analytical estimates. It  is found that these three fractal 
dimensions show quite different behaviour as the degeneracy of the critical point is varied. 
Therefore, although they are sometimes used almost interchangeably as measures of fractal 
dimension, they are actually very different concepts. 

1. Introduction 

Since Ruelle and Takens (1971) proposed the idea of a strange attractor as a possible 
agent responsible for the occurrence of turbulence, this scenario has attracted consider- 
able interest. However, it was not until quite recently when experimental evidence 
(Abraham er a1 1984) for the existence of strange attractors began to accumulate that 
credibility was lent to this previously purely theoretical concept. 

To quantify a strange attractor, the most commonly used measures are the fractal 
dimension, the Lyapunov exponent and the metric entropy. There is a proliferation 
of definitions of fractal dimensions (Farmer et a1 1983). However, the three most 
commonly employed are the capacity D, the information dimension v and the correla- 
tion exponent U. The capacity D is determined by the box-counting algorithm: 

where M ( E )  is the number of non-empty hypercubes of side F needed to cover the 
attractor. Since the definition of D is purely geometric in nature, it is oblivious to the 
frequency at which various parts of the attractor are visited. The notion of the 
information dimension was introduced to take into account the possible non-uniform 
distribution of points on the attractor. It is defined as 

where p ,  is the probability for a point to fall into the ith box, and S ( E )  = - X M ( , F ) p ,  log p ,  
is the information entropy. The box-counting algorithm requires an enormous amount 
of memory and becomes prohibitively time-consuming as the dimension increases. 

f Present address: Center for Studies of Nonlinear Dynamics, La Jolla Institute, La Jolla, CA 92037, USA. 
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The correlation exponent v was introduced to by-pass such difficulties (Grassberger 
and Procaccia 1983a, b). It is defined as 

log C ( & )  v = lim 

where the correlation sum C ( E )  is 
E - 0  log& (3)  

and e(x) is the Heaviside step function. 
There is some indication (Grassberger 1981) that the fractal dimension is also a 

universal number as the period-doubling bifurcation ratios a and 6. However, as we 
know, for iterated maps of the interval 

a and 6 actually depend on the degeneracy z of the critical point (Hu and Mao 1982, 
Hu 1982, Hu and Satija 1983). It is interesting to ask how the various fractal dimensions 
will then depend on z. We have therefore calculated 0, (T and v for z = 2, 3, 4, 5 at 
the period-doubling accumulation point a*. In § 2 the numerical results are presented. 
Approximate analytical formulae for these fractal dimensions are derived in § 3. 
Finally, in 0 4, some concluding remarks are given. 

f (x)  = 1 - UlXl* ( 5 )  

2. Numerical results 

Numerical results for the capacity 0, the information dimension (T and the correlation 
experiment v are presented as a log-log plot in figures 1, 2 and 3 respectively. The 
power-law behaviour is seen to be well obeyed. 
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Figure 1. The capacity D for the critical maps f ( x )  = 1 - a* lx / ' ,  z = 2 (O), 3 (A) ,  4 ( W )  
and 5 (0). 
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Figure 2. The information dimension U for the critical maps ( x )  = 1 - a*/xli, z = 2 (O) ,  3 
(A) ,  4 (m) and 5 (0). 
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Figure 3. The correlation exponent U for critical maps f ( x )  = 1 = a * / x / ' ,  z = 2 (0). 3 ( A ) ,  
4 ( W )  and 5 (3). 
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Table 1. The capacity D, the information dimension cr and the correlation exponent U for 
the critical maps f ( x )  = 1 - a* )x ) ’ ,  z = 2, 3, 4, 5. Both the numerical and analytical values 
are listed. 

- 

~ 

D U U 

z Numerical Analytical Numerical Analytlcal Numerical Analytical 

2 0.538i0.01 0.538 0.517i0.08 0.517 0.501 i 0 . 0 2  0.499 
3 0.601 r0.01 0.606 0.557i0.01 0.551 0.509 i 0.02 0.509 
4 0.640i0.09 0.642 0.556-tO.04 0.555 0.498 i 0.05 0.497 
5 0.661 iO.08 0.665 0.558 i 0.02 0.550 0.483 i 0.03 0.481 
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Figure 4. The capacity D (O) ,  the information dimension cr (A) and the correlation 
exponent Y (.) as a function of the degeneracy z of the critical point. 

The values for 0, I+ and v are given by the slopes of the straight lines. They are 
listed in table 1 and plotted in figure 4. We have used the method of least-square fits 
to compute the slopes and  their errors. In general (with one exception: a(z  = 2), see 
table 1) the error bars are bigger for higher z because higher powers introduce bigger 
errors when iterating the map to higher orders. 

3. Analytical approximations for the fractal dimensions 

We will now show in detail how to derive the analytical approximations for the fractal 
dimensions (Grassberger 1981, Hentschel and Procaccia 1983). The derivation of these 
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formulae is based on the self-similarity of the Feigenbaum strange attractor. The 
Feigenbaum attractor consists of a set of points {xi}k = {xt, i = 1 , .  . . , 2k} generated by 
the map x,+, = g(x,) where g(x) is the invariant function satisfying the functional 
equation 

g(g(x)) = -a-'g(ax) (6) 
with the boundary condition g(0) = 1. 

we have rescaled the set such that xib) = 0 and xib) = 1, i.e. 
We sketch the set in figure 5 ( a )  for k = 2 ,  3 and  4, taking xo=O. In figure 5 ( b ) ,  

where 

& g = l + l / a .  ( 7 6 )  
The set { x , } ~  consists of two subsets: the even subset and the odd  subset, 

where 

and 

We will show that the even subset is exactly similar to the whole set. To see this, 
let us first prove inductively that 

X 
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For i = l ,  it holds as x l = g ( 0 ) = l  by (7), and x 2 = g ( l ) = - 1 / a  by (6). For i = 2 ,  (9) 
also holds since x4 = g(g(x))  can be rewritten as 

x4=  -a- 'g(-ax2) = -a-'g(g(O)) = -a - Ix2 .  

X2(,+') = g(g(x2,)) = -a-'g(-ax2,) 

(10) 
- I  Now we need to prove that if x2, = -a- 'x , ,  then x2(l+l) = -a x, ,~.  In fact, 

= -a- 'g(x,)  = --a-Ig(g(yo)) 

- - -a-lx,+I .  (11) 

Equation (9) is thus proved. 

{x,, i = 1, 2,. . . , 2k-'} scaled down by a factor - l / a ,  i.e., 
Equation (9) implies that the even subset is just the set { x , } ~ - ' =  

= a-'{xi}k-l. 

To see the structure of the odd subset, we notice that the elements of the even 
subset is generated by applying g(x) once for the corresponding element of the odd 
subset 

x2i = g(x2i-l). (13) 

Since x2i-l = 1, we can expand g(x2i-I) around x = 1, 

That is, the distance between an element x2i of the even (left) subset and the left 
boundary x2 = - l /a  is approximately proportional to the distance between an element 
xZi-' of the odd (right) subset and the right boundary point x = 1. In other words, the 
odd subset is approximately similar to the even subset scaled by a constant g'( l ) ,  

Substituting equation (12) into it, we have 

where a '= -ag'( 1). Together with (10) and (17), we see that the whole set consists 
of two subsets: the even or left subset which is exactly similar to it, and the odd or 
right subset which is only approximately so. Therefore, 

{Xi}k f -( l /a){xi}k- '+ ( l /a ' ){xi}? (18) 

Repeating the same discussion as before, we can divide each subset into two sub-subsets 
similar to it, and so on. Finally, we conclude that the Feigenbaum attractor can be 
divided into 2"-' subsets ( m  < k): S I ,  S 2 ,  . . . , S,, . . . , S2f11-1, each having the same 
structure but scaled by a different factor l / s j .  In this sense, we say the set is self-similar, 
or Cantor-set-like. 
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To end the discussion on the even and odd subsets, we give the approximate value 
for a’ below. Since the Feigenbaum invariant function g(x)  = 1 + c,x2+ c2x4+. . . , and 
g(1) = -1/a,  we approximate it up to O(x2) as 

(19) 

Hence, xo = 0, xl = 1, x2 = -1/ CY, x3 = g( - l /a)  = 1 - ( 1  + l / a ) /  a’ and x4 = l/a2. From 
(15), we have 

g(x)  = 1 - (1 + l /a)x2. 

CY -- x4 - x2 
x3-x1 

g’( 1) = - - 
and 

a‘=-CYg‘(l)=CY2. 

3.1. Capacity D 

We first derive the approximate analytical formula for the capacity D. As shown in 
figure S(b),  the whole set consists of R similar subsets S,, j = 1, . . . , R. Let sj denote 
the scaling factor of the j t h  subset, then 

(22) 
1 

s. = 
x h j - X h j - ,  

where xi is an element of the set {x:, i = 1, .  . , , R }  and is ordered such that 

o=x;  <x;<x ;< .  . . <xL = 1. (23) 

When one uses a bin of size E to cover the whole attractor, the number of non-empty 
bins is 

R 
M (  E )  = M”’( E )  

j = l  

where M( ’ ) (E )  is the number of bins with length E needed to cover the j th  subset Sj 
with length l/sj. From the definitions of M ( E )  and 0, one has 

M ( & )  = S J D M ( & / S j )  (25) 

M ( j ) ( E )  = S , - D M ( j ’ ( E / s , ) .  (24) 

and, if one considers the j th  subset only 

Due to self-similarity, one has 

M ( J ) ( E / S j )  = M ( E ) .  

Therefore, using (24)-(27), one obtains 

In other words, 
R c sJ-” = 1. 

J = 1  

This is an implicit equation for D. 
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3.2. Information dimension U 

Now we turn to the derivation of an approximate formula for the information dimension 
U. When one uses a bin of size E to cover the whole set, one divides the set into 1 / &  
intervals labelled by k, k = 1, 2 , .  . . , 1 / ~ .  Let p k ( & )  be the probability for points to fall 
into the kth interval, and  p t ! ( ~ )  be the probability for points of the j t h  subset S to 
fall into the kth interval. Due to self-similarity, one has 

Pk(&) = R p k 1 ) ( & / S j ) .  (30) 

The information entropy is defined as 

k = l  

Since the set contains R similar subsets, it can be rewritten as 

Substituting (30) into it, one has 

This is the equation for S ( E ) .  Its solution is of the form 

S ( E )  = U l n ( l / E ) .  

Substituting it into (33), one has 

1 R 1  1 1 R  1 
E j = i  R R R j = l  ES] 

( + I n - = - C  -In-+- (+In- 

or 

R In R 
z,E, In si* 

(+= 

This formula gives an analytical approximation for U. 

3.3. Correlation exponent v 

An approximate formula for the correlation exponent v can be derived in a similar 
way. The correlation sum C ( E )  of (4) can be approximately expressed as 
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One then has 

R 

= ( l / R ) ’  1 C ( E S ~ ) .  
J = I  

This equation has a solution of the form given by (4) .  Substituting this form into (38), 
one has 

R 

CO&” = ( l / R ) *  C,(ES,)” 
] = I  

(39) 

or 
R 

s r =  R 2 .  (40) 
J = l  

This gives an implicit equation for v. 
The equations (29), (36) and (40) are the approximate analytical formulae for D, 

U and v respectively. To calculate the three dimensions by these equations, we first 
obtain the strange attractors generated by the Feigenbaum invariant function with 
different z. For z = 2 , 3 , 4  and 5,  the results are listed in table 1 .  Up to sixteen ( R  = 16) 
subsets of the attractor have been used. One can see that the analytical approximations 
agree quite well with the numerical results calculated directly from the definitions. 

4. Concluding remarks 

It is clear from figure 4 that, although the rigorous inequality D 5 U 5 v is always 
obeyed, the variation of D, U and v with z is very different. D seems to increase with 
z ;  U seems to increase to a more or less constant value very quickly; and v seems to 
increase to a certain value and  then decrease. Therefore it is important to emphasise 
that, although the capacity, the information dimension and  the correlation exponent 
are sometimes all branded as ‘fractal dimension’, they are actually different concepts 
and should not be used interchangeably for the sake of expedience. Their behaviour 
can be very different as the control parameter is changed. 

It is nowadays fashionable to invent, as a matter of expediency, new definitions 
of dimension. Useful as these definitions may be, they might not have anything to d o  
with the original concept of dimension. In this sense the word ‘dimension’ may have 
been abused. It may be instructive to learn from a closely related field: critical 
phenomena. In critical phenomena there are nine critical exponents. They are related, 
and  they satisfy various inequalities; however, they denote different physical quantities. 
One exponent may be more difficult to calculate or measure than the other; however, 
it is not proper to use one as a substitute for the other. 

Finally, a word as to the physical relevance of the degeneracies of the critical point 
for the cases other than z = 2. Indeed, present experiments are largely consistent with 
the quadratic case. However, as pointed out by Kuramoto and Koga (1982), other 
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z values might arise in chemical turbulence. It is also entirely conceivable, for symmetry 
or other reasons, for the quadratic term to vanish and higher z to come into play. It 
is therefore premature to preclude the physical relevance of the other degeneracies of 
the critical point. 
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